## 11/25/02

## Chapter 20 - Short Term Financing

- Typical short-term financing instruments:

1. Bank Debt
2. Short term debt Instrument

- Commercial Paper/Notes
- Revolving bank debt (adjustable rate)
- Cost of borrowing = Base Rate + Spread

Base Rate: Prime, LIBOR, T-bill.

## - Determination of the Cost of Borrowing

The cost of borrowing is easy to determined the interest rate (i) quoted by a bank. But, when borrowing abroad, borrowers should also consider $\mathrm{e}_{\mathrm{f}}$

For a US MNC, the effective borrowing cost (in USD) has two elements:

- Cost of borrowing = quoted interest rate = i
- But, when borrowing abroad, borrowers should also consider $\mathrm{e}_{\mathrm{f}}$

For a US MNC, the effective borrowing cost (in USD):

$$
\mathrm{R}_{\mathrm{b}, \mathrm{FC}}(\mathrm{in} \text { USD })=\left(1+\mathrm{i}_{\mathrm{FC}} \mathrm{xT} / 360\right)\left(1+\mathrm{e}_{\mathrm{f}, \mathrm{t}}\right)-1
$$

As we know, $\mathrm{e}_{\mathrm{f}, \mathrm{t}}$ is unknown and difficult to forecast. Let's assume we know/estimate $\mathrm{E}\left[\mathrm{e}_{\mathrm{f}}\right]$. Then, $\mathrm{R}_{\mathrm{b}, \mathrm{FC}}$ (in USD) is an expectation, the expected effective borrowing cost $=>\mathrm{E}\left[\mathrm{R}_{\mathrm{b}, \mathrm{FC}}\right]$.

## MNCs: Evaluation of Borrowing Choices

MNCs can borrow in almost all countries. Q: Where should a MNC borrow? Where it is cheaper. MNCs will compare effective borrowing costs (translated to the domestic currency of the MNC, say USD).

Example: BHP Billiton, Australia's mining giant, can borrow at home or abroad, say China.
Data:
$\mathrm{i}_{\text {AUD }}=7 \%$
$\mathrm{i}_{\mathrm{CNY}}=10 \%$
$\mathrm{E}\left[\mathrm{e}_{\mathrm{f}, \mathrm{t}}\right]=-1 \%$ (CNY expected to depreciate 1\% against AUD next quarter)
$\mathrm{T}=90$ day loan $\quad(\mathrm{T} / 360=90 / 360=1 / 4)$
$R_{b, A U D}=i_{\text {AUD }}=7 \% \times 90 / 360=.0175$ (or $1.75 \%$ )
$\mathrm{E}\left[\mathrm{R}_{\mathrm{b}, \mathrm{CNY}}(\mathrm{AUD})\right]=\left(1+\mathrm{i}_{\mathrm{CNY}} \mathrm{x} 90 / 360\right) \mathrm{x}\left(1+\mathrm{E}\left[\mathrm{e}_{\mathrm{f}, \mathrm{t}}\right)-1=(1+.1 / 4) \mathrm{x}(1-.01)=.01475\right.$ (1.475\%)
$\Rightarrow$ BHP should borrow abroad -i.e., in CNY. It faces a lower expected borrowing cost. वI

MNCs can borrow anywhere. MNCs can also have portfolios of borrowings.
Why? For diversification purposes: It reduces the risk of interest rates increasing in one place (revolving credit).

Example: Petrobras choices: Home (Brazil) or Abroad (single currency or portfolio of currencies)
Data:
$\mathrm{i}_{\text {BRL }}=9.1 \%$
$\mathrm{i}_{\mathrm{NZD}}=9 \% \quad \mathrm{E}\left[\mathrm{e}_{\mathrm{f}, \mathrm{t}}\right]=2 \%$
$\mathrm{i}_{\mathrm{JPY}}=2 \% \quad \mathrm{E}\left[\mathrm{e}_{\mathrm{f}, \mathrm{t}}\right]=6.8 \%$
Portfolio: $\mathrm{w}_{\mathrm{JPY}}=.8, \mathrm{w}_{\mathrm{NZD}}=.2$
For simplicity assume $T=1$ year $\quad(=>~ T / 360=1)$.
Where should Petrobras borrow?

1. Home: $\quad R_{B R L}=9.1 \%$
2. New Zealand: $\quad E\left[R_{N Z D}\right]=11.18 \%$
3. Japan: $\quad E\left[R_{J P Y}\right]=8.936 \%$
4. Portfolio: $\quad E\left[R_{\text {Port }}\right]=.80 *(8.936)+.20 *(11.18)=9.3848 \%$
$\Rightarrow$ Petrobras should borrow in Japan. II
Problem: We have assumed that we know the expected change in $\mathrm{S}_{\mathrm{t}}$-i.e., $\mathrm{E}\left[\mathrm{e}_{\mathrm{f}, \mathrm{t}}\right]$. But, we have not said anything about the precision of the expectation, that is, we have ignored the FX risk of each currency. In general, we work with a probability distribution. It gives us an idea of risk, since we will see a realization from the distribution, not the expectation.

Example: Now, we introduce probability distributions for $\mathrm{e}_{\mathrm{f}}$.
Data:
$\mathrm{i}_{\text {BRL }}=9.1 \%$
$\mathrm{i}_{\text {NZD }}=9 \%$
$\mathrm{i}_{\mathrm{JPY}}=2 \%$
NZD

| $\mathrm{e}_{\mathrm{f},+90}$ | Probability | $\mathrm{R}_{\mathrm{NZD}}$ |
| :--- | :--- | :--- |
| .01 | .5 | $(1+.09) *(1.01)-1=10.09 \%$ |
| .03 | .5 | $(1+.09) *(1.03)-1=12.27 \%$ |

JPY

| $\mathrm{e}_{\mathrm{f}, \mathrm{t}+90}$ | Probability | $\mathrm{R}_{\mathrm{JPY}}$ |
| :--- | :--- | :--- |
| .02 | .4 | $(1+.02)^{*}(1.02)-1=4.04 \%$ |
| .10 | .6 | $(1+.02)^{*}(1.10)-1=12.2 \%$ |

Where should Petrobras borrow?
1 Home: $\quad R_{b, B R L}=9 \%$
2. $\mathrm{NZ}: \quad E\left[R_{b, N Z D}\right]=.5 *(.1009)+.5 *(.1227)=11.18 \%$
3. Japan: $\quad E\left[R_{b, J P Y}\right]=.4^{*}(.0404)+.6^{*}(.122)=8.936 \%$

| NZDe $_{\mathrm{f}, \mathrm{t}+90}$ | JPYe $_{\mathrm{f}, \mathrm{t}+90}$ | Joint Prob(Ind) | Effective borrowing cost (BRL) <br> .01 |
| :--- | :--- | :--- | :--- |
| .01 | .10 | $.5^{*} .4=.2$ | $.8^{*}(.0404)+.2^{*}(.1009)=.0525$ |
| .03 | .02 | $.5^{*} .6=.3$ | $.8^{*}(.1227)+.2^{*}(.1009)=.1178$ |
| .03 | .10 | $.5^{*} .4=.2$ | $.8^{*}(.0404)+.2^{*}(.1227)=.0566$ |
|  |  |  | $.8^{*} .6=.3$ |
|  | $\Rightarrow E\left[\mathrm{R}_{\mathrm{b}, \mathrm{port}}\right]=.09379$ |  |  |

Now, it is likely Petrobras will borrow in Brazil; but not so clear, preferences matter. वा
Note: We have paid no attention to the variability of interest rates. Variability in borrowing costs was only introduced through the distribution of $\mathrm{e}_{\mathrm{f}, \mathrm{t}}$. But interest rates do change and it may be very important to an MNC. For example, if an MNC selects a revolving debt, it should consider the variability of the rates. In this chapter, we are considering this exercise as a one shot game.

## Chapter 21 - Short-term Investing

The usual instruments for short-term investments are:

- Bank deposits \& CDs
- Short-term bills/paper/notes

Idea: MNCs with excess cash for a short term period (7 days, 15 days, a month)
MNCs will try to invest in the country that offers the highest return, once exchange rate effects are considered. We are back to the context of the IFE.

Note: This Chapter presents a similar idea to the one in Chapter 20, but, now, we are maximizing a rate of return, instead of minimizing the cost of borrowing.

Alternatives for MNCs: Home, abroad, portfolio
Exactly like in Chapter 20, when investing abroad, MNCs should also consider $\mathrm{e}_{\mathrm{f}}$. Since we do not know $\mathrm{e}_{\mathrm{f}}$, we work with $\mathrm{E}\left[\mathrm{e}_{\mathrm{f}, \mathrm{t}}\right]$. That is, for a US MNC, the (expected) effective yield/return (in USD):

$$
\left.\mathrm{E}\left[\mathrm{R}^{\mathrm{USD}} \mathrm{FC}\right]=\left(1+\mathrm{R}_{\mathrm{FC}} \mathrm{x} \mathrm{~T} / 360\right)\left(1+\mathrm{E}\left[\mathrm{e}_{\mathrm{f}, \mathrm{t}}\right]\right)-1 \quad \text { (yield in } \mathrm{DC}=\mathrm{USD}\right) .
$$

Example: IBM can invest at home, the U.K., and Mexico.
Data:
$\mathrm{R}_{\text {USD }}=6 \%$
$\mathrm{R}_{\mathrm{GBP}}=5 \% \quad \mathrm{E}\left[\mathrm{e}_{\mathrm{f}, \mathrm{t}}\right]=0.7 \%$
$\mathrm{R}_{\mathrm{MXP}}=12 \% \quad \mathrm{E}\left[\mathrm{e}_{\mathrm{f}, \mathrm{t}}\right]=-1 \%$
$\mathrm{T}=1$ month $=>\mathrm{T} / 360=1 / 12$.
IBM will translate the foreign return into an effective USD return, $R_{\text {FC. }}^{\text {USD }}$.

1. Home

$$
R_{\text {USD }}=.06 \times 30 / 360=0.005
$$

2. Abroad

UK:

$$
\mathrm{E}\left[\mathrm{R}_{\mathrm{GBP}}{ }^{\mathrm{USD}}\right]=(1+.05 / 12)^{*}(1.007)-1=.011196
$$

Mexico:

$$
\mathrm{E}\left[\mathrm{R}_{\mathrm{MXP}}{ }^{\mathrm{USD}}\right]=(1+.12 / 12)^{*}(1-.01)-1=-.0001
$$

In terms of expected returns, MSFT should invest in the U.K. ๆ
Problem: For a more realistic problem, we need to introduce probability distributions for the MXP/USD and GBP/USD.

