FINA 4360 – International Financial Management

Rauli Susmel Dept. of Finance Univ. of Houston

11/25/02 Chapter 20 - Short Term Financing

- Typical short-term financing instruments:

- 1. Bank Debt
- 2. Short term debt Instrument
 - Commercial Paper/Notes
 - Revolving bank debt (adjustable rate)

- Cost of borrowing = Base Rate + Spread Base Rate: Prime, LIBOR, T-bill.

• Determination of the Cost of Borrowing

The cost of borrowing is easy to determined the interest rate (i) quoted by a bank. But, when borrowing abroad, borrowers should also consider e_f

For a US MNC, the effective borrowing cost (in USD) has two elements:

- Cost of borrowing = quoted interest rate = i

- But, when borrowing abroad, borrowers should also consider ef

For a US MNC, the *effective borrowing* cost (in USD): $R_{b,FC}$ (in USD) = $(1 + i_{FC} \times T/360)(1 + e_{f,t}) - 1$

As we know, $e_{f,t}$ is unknown and difficult to forecast. Let's assume we know/estimate $E[e_f]$. Then, $R_{b,FC}$ (in USD) is an expectation, the *expected* effective borrowing cost => $E[R_{b,FC}]$.

MNCs: Evaluation of Borrowing Choices

MNCs can borrow in almost all countries. Q: Where should a MNC borrow? Where it is cheaper. MNCs will compare effective borrowing costs (translated to the domestic currency of the MNC, say USD).

Example: BHP Billiton, Australia's mining giant, can borrow at home or abroad, say China. Data:

$$\begin{split} i_{AUD} &= 7\% \\ i_{CNY} &= 10\% \\ E[e_{f,t}] &= -1\% \text{ (CNY expected to depreciate 1% against AUD next quarter)} \\ T &= 90 \text{ day loan} \qquad (T/360 = 90/360 = 1/4) \end{split}$$

 $\begin{aligned} R_{b,AUD} &= i_{AUD} = 7\% \ x \ 90/360 = .0175 \ (or \ 1.75\%) \\ E[R_{b,CNY} (AUD)] &= (1 + i_{CNY} x 90/360) x (1 + E[e_{f,t}]) - 1 = (1 + .1/4) x (1 - .01) = .01475 \ (1.475\%) \\ \Rightarrow BHP \text{ should borrow abroad } -i.e., \text{ in CNY. It faces a lower expected borrowing cost. } \end{aligned}$

MNCs can borrow anywhere. MNCs can also have portfolios of borrowings. Why? For diversification purposes: It reduces the risk of interest rates increasing in one place (revolving credit).

Example: Petrobras choices: Home (Brazil) or Abroad (single currency or portfolio of currencies)

Data: $i_{BRL} = 9.1\%$ $i_{NZD} = 9\%$ $E[e_{f,t}] = 2\%$ $i_{JPY} = 2\%$ $E[e_{f,t}] = 6.8\%$ Portfolio: $w_{JPY} = .8$, $w_{NZD} = .2$ For simplicity assume T=1 year (=> T/360=1).

Where should Petrobras borrow?

1. Home:	$R_{BRL} = 9.1\%$
2. New Zealand:	$E[R_{NZD}] = 11.18\%$
3. Japan:	$E[R_{JPY}] = 8.936\%$
4. Portfolio:	$E[R_{Port}] = .80^{*}(8.936) + .20^{*}(11.18) = 9.3848\%$
	\Rightarrow Petrobras should borrow in Japan. ¶

<u>Problem:</u> We have assumed that we know the expected change in S_t -i.e., $E[e_{f,t}]$. But, we have not said anything about the precision of the expectation, that is, we have ignored the FX risk of each currency. In general, we work with a probability distribution. It gives us an idea of risk, since we will see a realization from the distribution, not the expectation.

Example: Now, we introduce probability distributions for e_f.

Data: $i_{BRL} = 9.1\%$ $i_{NZD} = 9\%$ $i_{JPY} = 2\%$

NZD

$e_{f,t+90}$	Probability	R _{NZD}
.01	.5	(1+.09)*(1.01)-1=10.09%
.03	.5	(1+.09)*(1.03)-1=12.27%

JPY

$\overline{e_{f,t+90}}$	Probability	R _{JPY}
.02	.4	(1+.02)*(1.02) -1=4.04%
.10	.6	(1+.02)*(1.10)-1=12.2%

Where should Petrobras borrow?

1 Home:	$R_{b,BRL} = 9\%$
2. NZ :	$E[R_{b,NZD}] = .5^*(.1009) + .5^*(.1227) = 11.18\%$
3. Japan:	$E[R_{b,JPY}] = .4^*(.0404) + .6^*(.122) = 8.936\%$

<u>NZD</u> e _{f,t+90}	$\underline{JPY}e_{f,t+90}$	Joint Prob(Ind)	Effective borrowing cost (BRL)
.01	.02	.5*.4=.2	.8*(.0404) + .2*(.1009) = .0525
.01	.10	.5*.6=.3	.8*(.1227) + .2*(.1009) = .1178
.03	.02	.5*.4=.2	.8*(.0404) + .2*(.1227) = .0566
.03	.10	.5*.6=.3	.8*(.122) + .2*(.1227) = .1221
			$\Rightarrow E[R_{b,port}] = .09379$

Now, it is likely Petrobras will borrow in Brazil; but not so clear, preferences matter.

<u>Note</u>: We have paid no attention to the variability of interest rates. Variability in borrowing costs was only introduced through the distribution of $e_{f,t}$. But interest rates do change and it may be very important to an MNC. For example, if an MNC selects a revolving debt, it should consider the variability of the rates. In this chapter, we are considering this exercise as a one shot game.

Chapter 21 – Short-term Investing

The usual instruments for short-term investments are:

- Bank deposits & CDs
- Short-term bills/paper/notes

<u>Idea</u>: MNCs with excess cash for a short term period (7 days, 15 days, a month) MNCs will try to invest in the country that offers the highest return, once exchange rate effects are considered. We are back to the context of the IFE.

<u>Note</u>: This Chapter presents a similar idea to the one in Chapter 20, but, now, we are maximizing a rate of return, instead of minimizing the cost of borrowing.

Alternatives for MNCs: Home, abroad, portfolio

Exactly like in Chapter 20, when investing abroad, MNCs should also consider e_f . Since we do not know e_f , we work with $E[e_{f,t}]$. That is, for a US MNC, the (expected) *effective yield/return* (in USD):

 $E[R^{USD}_{FC}] = (1 + R_{FC} \times T/360) (1 + E[e_{f,t}]) - 1$ (yield in DC=USD).

Example: IBM can invest at home, the U.K., and Mexico.

Data: $R_{USD} = 6\%$ $R_{GBP} = 5\%$ $E[e_{f,t}] = 0.7\%$ $R_{MXP} = 12\%$ $E[e_{f,t}] = -1\%$ T = 1 month =>T/360=1/12.IBM will translate the foreign return into an effective USD return, R_{FC}^{USD} .

1. Home

$$R_{USD} = .06 \times 30/360 = 0.005 \qquad (0.50\%)$$
2. Abroad
UK: $E[R_{GBP}^{USD}] = (1+.05/12)*(1.007)-1 = .011196 \qquad (1.12\%)$

Mexico:
$$E[R_{MXP}^{USD}] = (1+.12/12)*(1-.01) - 1 = -.0001$$
 (-0.01%)

In terms of expected returns, MSFT should invest in the U.K. \P

<u>Problem</u>: For a more realistic problem, we need to introduce probability distributions for the MXP/USD and GBP/USD.